Extensions 1→N→G→Q→1 with N=C32 and Q=C4xS3

Direct product G=NxQ with N=C32 and Q=C4xS3
dρLabelID
S3xC3xC1272S3xC3xC12216,136

Semidirect products G=N:Q with N=C32 and Q=C4xS3
extensionφ:Q→Aut NdρLabelID
C32:1(C4xS3) = C6.S32φ: C4xS3/C2D6 ⊆ Aut C32366C3^2:1(C4xS3)216,34
C32:2(C4xS3) = He3:(C2xC4)φ: C4xS3/C2D6 ⊆ Aut C32366-C3^2:2(C4xS3)216,36
C32:3(C4xS3) = C4xC32:C6φ: C4xS3/C4S3 ⊆ Aut C32366C3^2:3(C4xS3)216,50
C32:4(C4xS3) = C4xHe3:C2φ: C4xS3/C4S3 ⊆ Aut C32363C3^2:4(C4xS3)216,67
C32:5(C4xS3) = S3xC32:C4φ: C4xS3/S3C4 ⊆ Aut C32128+C3^2:5(C4xS3)216,156
C32:6(C4xS3) = Dic3xC3:S3φ: C4xS3/C6C22 ⊆ Aut C3272C3^2:6(C4xS3)216,125
C32:7(C4xS3) = C33:8(C2xC4)φ: C4xS3/C6C22 ⊆ Aut C3236C3^2:7(C4xS3)216,126
C32:8(C4xS3) = C33:9(C2xC4)φ: C4xS3/C6C22 ⊆ Aut C32244C3^2:8(C4xS3)216,131
C32:9(C4xS3) = C3xC6.D6φ: C4xS3/Dic3C2 ⊆ Aut C32244C3^2:9(C4xS3)216,120
C32:10(C4xS3) = C12xC3:S3φ: C4xS3/C12C2 ⊆ Aut C3272C3^2:10(C4xS3)216,141
C32:11(C4xS3) = C4xC33:C2φ: C4xS3/C12C2 ⊆ Aut C32108C3^2:11(C4xS3)216,146
C32:12(C4xS3) = C3xS3xDic3φ: C4xS3/D6C2 ⊆ Aut C32244C3^2:12(C4xS3)216,119
C32:13(C4xS3) = S3xC3:Dic3φ: C4xS3/D6C2 ⊆ Aut C3272C3^2:13(C4xS3)216,124

Non-split extensions G=N.Q with N=C32 and Q=C4xS3
extensionφ:Q→Aut NdρLabelID
C32.(C4xS3) = C4xC9:C6φ: C4xS3/C4S3 ⊆ Aut C32366C3^2.(C4xS3)216,53
C32.2(C4xS3) = Dic3xD9φ: C4xS3/C6C22 ⊆ Aut C32724-C3^2.2(C4xS3)216,27
C32.3(C4xS3) = C18.D6φ: C4xS3/C6C22 ⊆ Aut C32364+C3^2.3(C4xS3)216,28
C32.4(C4xS3) = C12xD9φ: C4xS3/C12C2 ⊆ Aut C32722C3^2.4(C4xS3)216,45
C32.5(C4xS3) = C4xC9:S3φ: C4xS3/C12C2 ⊆ Aut C32108C3^2.5(C4xS3)216,64

׿
x
:
Z
F
o
wr
Q
<