extension | φ:Q→Aut N | d | ρ | Label | ID |
C32:1(C4xS3) = C6.S32 | φ: C4xS3/C2 → D6 ⊆ Aut C32 | 36 | 6 | C3^2:1(C4xS3) | 216,34 |
C32:2(C4xS3) = He3:(C2xC4) | φ: C4xS3/C2 → D6 ⊆ Aut C32 | 36 | 6- | C3^2:2(C4xS3) | 216,36 |
C32:3(C4xS3) = C4xC32:C6 | φ: C4xS3/C4 → S3 ⊆ Aut C32 | 36 | 6 | C3^2:3(C4xS3) | 216,50 |
C32:4(C4xS3) = C4xHe3:C2 | φ: C4xS3/C4 → S3 ⊆ Aut C32 | 36 | 3 | C3^2:4(C4xS3) | 216,67 |
C32:5(C4xS3) = S3xC32:C4 | φ: C4xS3/S3 → C4 ⊆ Aut C32 | 12 | 8+ | C3^2:5(C4xS3) | 216,156 |
C32:6(C4xS3) = Dic3xC3:S3 | φ: C4xS3/C6 → C22 ⊆ Aut C32 | 72 | | C3^2:6(C4xS3) | 216,125 |
C32:7(C4xS3) = C33:8(C2xC4) | φ: C4xS3/C6 → C22 ⊆ Aut C32 | 36 | | C3^2:7(C4xS3) | 216,126 |
C32:8(C4xS3) = C33:9(C2xC4) | φ: C4xS3/C6 → C22 ⊆ Aut C32 | 24 | 4 | C3^2:8(C4xS3) | 216,131 |
C32:9(C4xS3) = C3xC6.D6 | φ: C4xS3/Dic3 → C2 ⊆ Aut C32 | 24 | 4 | C3^2:9(C4xS3) | 216,120 |
C32:10(C4xS3) = C12xC3:S3 | φ: C4xS3/C12 → C2 ⊆ Aut C32 | 72 | | C3^2:10(C4xS3) | 216,141 |
C32:11(C4xS3) = C4xC33:C2 | φ: C4xS3/C12 → C2 ⊆ Aut C32 | 108 | | C3^2:11(C4xS3) | 216,146 |
C32:12(C4xS3) = C3xS3xDic3 | φ: C4xS3/D6 → C2 ⊆ Aut C32 | 24 | 4 | C3^2:12(C4xS3) | 216,119 |
C32:13(C4xS3) = S3xC3:Dic3 | φ: C4xS3/D6 → C2 ⊆ Aut C32 | 72 | | C3^2:13(C4xS3) | 216,124 |